WARNING

Do not proceed with these instructions until you have READ the orange cover of this MANUAL and YOU UNDERSTAND its content.* These WARNINGS are included for the health and safety of the operator and those in the immediate vicinity.

*If you are using a Clemco Distributor Parts and Maintenance Guide refer to the orange warnings insert preceding the Index before continuing with the following instructions.
NOTICE TO PURCHASERS AND USERS OF OUR PRODUCTS AND THIS INFORMATIONAL MATERIAL

The products described in this material, and the information relating to those products, is intended for knowledgeable, experienced users of abrasive blasting equipment.

No representation is intended or made as to the suitability of the products described herein for any particular purpose or application. No representations are intended or made as to the efficiency, production rate, or the useful life of the products described herein. Any estimate regarding production rates or production finishes are the responsibility of the user and must be derived solely from the user’s experience and expertise, and must not be based on information in this material.

The products described in this material may be combined by the user in a variety of ways for purposes determined solely by the user. No representations are intended or made as to the suitability or engineering balance of the combination of products determined by the user in his selection, nor as to the compliance with regulations or standard practice of such combinations of components or products.

Abrasive Blast Equipment is only a component of the range of equipment used in an abrasive blasting job. Other products may include an air compressor, abrasive, scaffolding, hydraulic work platforms or booms, paint spray equipment, dehumidification equipment, air filters and receivers, lights, ventilation equipment, parts handling equipment, specialized respirators, or equipment that while offered by Clemco may have been supplied by others. Each manufacturer and supplier of the other products used in the abrasive blasting job must be contacted for information, training, instruction and warnings with regard to the proper and safe use of their equipment in the particular application for which the equipment is being used. The information provided by Clemco is intended to provide instruction only on Clemco products. All operators must be trained in the proper, safe, use of this equipment. It is the responsibility of the users to familiarize themselves with, and comply with, all appropriate laws, regulations, and safe practices that apply to the use of these products. Consult with your employer about training programs and materials that are available.

Our company is proud to provide a variety of products to the abrasive blasting industry, and we have confidence that the professionals in our industry will utilize their knowledge and expertise in the safe efficient use of these products.

GENERAL INSTRUCTIONS

Described herein are some, BUT NOT ALL, of the major requirements for safe and productive use of blast machines, remote control systems, operator respirator assemblies, and related accessories. Completely read ALL instruction manuals prior to using equipment.

The user’s work environment may include certain HAZARDS related to the abrasive blasting operation. Proper protection for the blaster, as well as anyone else that may be EXPOSED to the hazards generated by the blasting process, is the responsibility of the user and/or the employer. Operators MUST consult with their employer about what hazards may be present in the work environment including, but not limited to, exposure to dust that may contain TOXIC MATERIALS due to the presence of silica, cyanide, arsenic or other toxins in the abrasive, or materials present in the surface to be blasted such as lead or heavy metals in coatings. The environment may also include fumes that may be present from adjacent coatings application, contaminated water, engine exhaust, chemicals, and asbestos. The work area may include PHYSICAL HAZARDS such as an uneven work surface, poor visibility, excess noise, and electrical hazards. The operator MUST consult with his employer on the identification of potential hazards, and the appropriate measures that MUST be taken to protect the blaster and others that might be exposed to these hazards.

ALL machines, components and accessories MUST be installed, tested, operated and maintained only by trained, knowledgeable, experienced users.

DO NOT modify or substitute any Clemco parts with other types or brands of equipment. Unauthorized modification and parts substitution on supplied air respirators is a violation of OSHA regulations and voids the NIOSH approval.

OPERATIONAL INSTRUCTIONS

OPERATOR SAFETY EQUIPMENT

WARNING

- Blast operators and others working in the vicinity of abrasive blasting must always wear properly-maintained, NIOSH-approved, respiratory protection appropriate for the job site hazards.
- DO NOT USE abrasives containing more than one percent crystalline (free) silica. Ref. NIOSH Alert #92-102
- Inhalation of toxic dust (crystalline silica, asbestos, lead paint and other toxins) can lead to serious or fatal disease (silicosis, asbestosis, lead or other poisoning).
- ALWAYS wear NIOSH-approved supplied-air respirators as required by OSHA, in the presence of any dust including, but not limited to, handling or loading abrasive; blasting or working in the vicinity of blast jobs; and cleanup of expended abrasive. Prior to removing respirator, an air monitoring
instrument should be used to determine when surrounding atmosphere is clear of dust and safe to breathe.

- NIOSH-approved, supplied-air respirators are to be worn ONLY in atmospheres:
 - NOT IMMEDIATELY dangerous to life or health and,
 - from which a user can escape WITHOUT using the respirator.

- Clemco supplied-air respirators DO NOT REMOVE OR PROTECT AGAINST CARBON MONOXIDE (CO) OR ANY OTHER TOXIC GAS. Carbon monoxide and toxic gas removal and/or monitoring device must be used in conjunction with respirator to insure safe breathing air.

- Air supplied to respirator MUST BE AT LEAST GRADE D QUALITY as described in Compressed Gas Association Commodity Specification G-7.1, and as specified by OSHA Regulation 1910.139 (d).

- ALWAYS locate compressors to prevent contaminated air (such as CO from engine exhaust) from entering the air intake system. A suitable in-line air purifying sorbent bed and filter or CO Monitor should be installed to assure breathing air quality.

- ALWAYS use a NIOSH-approved breathing air hose to connect an appropriate air filter to the respirator. Use of a non-approved air hose can subject the operator to illness caused by the release of chemical agents used in the manufacture of non-approved breathing air hose.

- ALWAYS check to make sure air filter and respirator system hoses are NOT CONNECTED to in-plant lines that contain nitrogen, acetylene or any other non-breathable gas. NEVER use oxygen with air line respirators. NEVER modify air line connections to accommodate air filter/respirator breathing hose WITHOUT FIRST testing content of the air line. FAILURE TO TEST THE AIR LINE MAY RESULT IN DEATH TO THE RESPIRATOR USER.

- Respirator lenses are designed to protect against rebounding abrasive. They do not protect against flying objects, glare, liquids, radiation or high speed heavy materials. Substitute lenses from sources other than the original respirator manufacturer will void NIOSH-approval of this respirator.

- NEVER modify OR substitute remote control parts. Parts from different manufacturers are NOT compatible with Clemco equipment. If controls are altered, involuntary activation, which may cause serious injury, can occur.

- Inspect the air control orifice DAILY for cleanliness. NEVER weld hose in place of twinline control hose. The internal diameter and rubber composition are UNSAFE for remote control use.

- UNLESS OTHERWISE SPECIFIED, maximum working pressure of blast machines and related components MUST NOT exceed National Board approved 125 psig (8.5 BAR).

- NEVER weld on blast machine. Welding may affect dimensional integrity of steel wall and WILL VOID National Board approval.

- Point nozzle ONLY at structure being blasted. High velocity abrasive particles WILL inflict serious injury. Keep unprotected workers OUT of blast area.

- NEVER attempt to manually move blast machine when it contains abrasive. EMPTY machines, up to 6 cu. ft.(270kg) capacity, are designed to be moved:
 - on flat, smooth surfaces by AT LEAST two people;
 - with the Clemco "Mule";
 - with other specially designed machine moving devices.

- Larger empty blast machines or ANY blast machine containing abrasive MUST be transported by mechanical lifting equipment.

AIR HOSE, BLAST HOSE, COUPLINGS, AND NOZZLE HOLDERS

- Air hose, air hose fittings and connectors at compressors and blast machines MUST be FOUR times the size of the nozzle orifice. Air hose lengths MUST be kept as short as possible AND in a straight line. Inspect DAILY and repair leakage IMMEDIATELY.

- Blast hose inside diameter MUST be THREE to FOUR times the size of the nozzle orifice. AVOID sharp bends that wear out hose rapidly. Use SHORTEST hose lengths possible to reduce pressure loss. Check blast hose DAILY for soft spots. Repair or replace IMMEDIATELY.

- ALWAYS cut loose hose ends square when installing hose couplings and nozzle holders to allow uniform fit of hose to coupling shoulder. NEVER install couplings or nozzle holders that DO NOT provide a TIGHT fit on hose. ALWAYS use manufacturers recommended coupling screws.

- Replace coupling gaskets FREQUENTLY to prevent leakage. Abrasive leakage can result in dangerous coupling failure. ALL gaskets MUST be checked SEVERAL times during a working day for wear, distortion and softness.

- Install safety pins at EVERY coupling connection to prevent accidental disengagement during hose movement.

- ALWAYS attach safety cables at ALL air hose AND blast hose coupling connections. Cables relieve tension on hose and control whipping action in the event of a coupling blow-out.
MAINTENANCE

- ALWAYS shut off compressor and depressurize blast machine BEFORE doing ANY maintenance.
- Always check and clean ALL filters, screens and alarm systems when doing any maintenance.
- ALWAYS cage springs BEFORE disassembling valves IF spring-loaded abrasive control valves are used.
- ALWAYS completely follow owner’s manual instructions and maintain equipment at RECOMMENDED intervals.

ADDITIONAL ASSISTANCE

- Training and Educational Programs.
 Clemco Industries Corp. offers a booklet, Blast-Off 2, developed to educate personnel on abrasive blast equipment function and surface preparation techniques. Readers will learn safe and productive use of machines, components and various accessories, including selection of abrasive materials for specific surface profiles and degrees of cleanliness.
- The Society for Protective Coatings (SSPC) offers a video training series on protective coatings including one entitled “Surface Preparation.” For loan or purchase information, contact SSPC at the address shown below.

TECHNICAL DATA AND RESEARCH COMMITTEES

- The following associations offer information, materials and videos relating to abrasive blasting and safe operating practices.
 - **The Society for Protective Coatings (SSPC)**
 40 24th Street, Pittsburgh PA 15222-4643
 Phone: (412) 281-2331 • FAX (412) 281-9992
 Email: research@sspc.org • Website: www.sspc.org
 - **National Association of Corrosion Engineers (NACE)**
 1440 South Creek Drive, Houston TX 77084
 Phone: (281) 228-6200 • FAX (281) 228-6300
 Email: msd@mail.nace.org • Website: www.nace.org
 - **American Society for Testing and Materials (ASTM)**
 100 Barr Harbor Dr., West Conshohocken, PA 19428
 Phone (610) 832-9500 • FAX (610) 832-9555
 Email: service@astm.org • Website: www.astm.org

NOTICE

This equipment is not intended to be used in an area that might be considered a hazardous location as described in the National Electric Code NFPA 70 1996, article 500.

WARRANTY

The following is in lieu of all warranties express, implied or statutory and in no event shall seller or its agents, successors, nominees or assignees, or either, be liable for special or consequential damage arising out of a breach of warranty. This warranty does not apply to any damage or defect resulting from negligent or improper assembly or use of any item by the buyer or its agent or from alteration or attempted repair by any person other than an authorized agent of seller. All used, repaired, modified or altered items are purchased “as is” and with all faults. In no event shall seller be liable for consequential or incidental damages. The sole and exclusive remedy of buyer for breach of warranty by seller shall be repair or replacement of defective parts or, at seller’s option, refund of the purchase price, as set forth below:

1. Seller makes no warranty with respect to products used other than in accordance hereunder.
2. On products seller manufactures, seller warrants that all products are to be free from defects in workmanship and materials for a period of one year from date of shipment to buyer, but no warranty is made that the products are fit for a particular purpose.
3. On products which buyer buys and resells pursuant to this order, seller warrants that the products shall carry the then standard warranties of the manufacturers thereof, a copy of which shall be made available to customer upon request.
4. The use of any sample or model in connection with this order is for illustrative purposes only and is not to be construed as a warranty that the product will conform to the sample or model.
5. Seller makes no warranty that the products are delivered free of the rightful claim of any third party by way of patent infringement or the like.
6. This warranty is conditioned upon seller’s receipt within ten (10) days after a buyer’s discovery of a defect, of a written notice stating in what specific material respects the product failed to meet this warranty. If such notice is timely given, seller will, at its option, either modify the product or part to correct the defect, replace the product or part with complying products or parts, or refund the amount paid for the defective product, any one of which will constitute the sole liability of seller and a full settlement of all claims. No allowance will be made for alterations or repairs made by other than those authorized by seller without the prior written consent of seller. Buyer shall afford seller prompt and reasonable opportunity to inspect the products for which any claim is made as above stated.

Except as expressly set forth above, all warranties, express, implied or statutory, including implied warranty of merchantability, are hereby disclaimed.

DAILY SET-UP CHECK LIST

WARNING

- ALL piping, fittings and hoses MUST be checked DAILY for tightness and leakage.
- ALL equipment and components MUST be thoroughly checked for wear.
- ALL worn or suspicious parts MUST be replaced.
- ALL blast operators MUST be properly trained to operate equipment.
- ALL blast operators MUST be properly outfitted with abrasive resistant clothing, safety shoes, leather gloves and ear protection.
- BEFORE blasting ALWAYS use the following check list.

1. **PROPERLY MAINTAINED AIR COMPRESSOR** sized to provide sufficient volume (cfm) for nozzle and other tools PLUS a 50% reserve to allow for nozzle wear. Use large compressor outlet and large air hose (4 times the nozzle orifice size). FOLLOW MANUFACTURERS MAINTENANCE INSTRUCTIONS.

2. **BREATHING AIR COMPRESSOR** (oil-less air pump) capable of providing Grade D Quality air located in a dust free, contaminant free area. If oil-lubricated air compressor is used to supply respirator, it should have high temperature monitor and CO monitor or both. If CO monitor is not used, air MUST be tested FREQUENTLY to ensure proper air quality.
3. Clean, properly maintained NIOSH-APPROVED SUPPLIED-AIR RESPIRATOR. ALL components should ALWAYS be present. NEVER operate without inner lens in place. Thoroughly inspect ALL components DAILY for cleanliness and wear. ANY substitution of parts voids NIOSH approval i.e. cape, lenses, breathing hose, breathing air supply hose, air control valve, cool air or climate control devices.

4. OSHA required BREATHING AIR FILTER for removal of moisture and particulate matter from breathing air supply. THIS DEVICE DOES NOT REMOVE OR DETECT CARBON MONOXIDE (CO). ALWAYS USE CO MONITOR ALARM.

5. ASME CODED BLAST MACHINE sized to hold 1/2 hour abrasive supply. ALWAYS ground machine to eliminate static electricity hazard. Examine pop up valve for alignment. Blast machine MUST be fitted with a screen to keep out foreign objects and a cover to prevent entry of moisture overnight.

6. AIR LINE FILTER installed AS CLOSE AS POSSIBLE to machine inlet. Sized to match inlet piping or larger air supply line. Clean filter DAILY. Drain OFTEN.

7. REMOTE CONTROLS MUST be in PERFECT operating condition. ONLY use APPROVED spare parts, including twin-line hose. DAILY: test system operation and check button bumper and spring action of lever and lever lock. DO NOT USE WELDING HOSE.

8. BLAST HOSE with ID 3 to 4 times the nozzle orifice. Lines MUST be run AS STRAIGHT AS POSSIBLE from machine to work area with NO sharp bends. Check DAILY for internal wear and external damage.

9. HOSE COUPLINGS, NOZZLE HOLDERS fitted SNUGLY to hose end and installed using PROPER coupling screws. Coupling lugs MUST be snapped FIRMLY into locking position. Gasket MUST form positive seal with safety pins inserted through pin holes. Check gaskets and replace if ANY sign of wear, softness or distortion. ALWAYS install safety cables at every connection to prevent disengagement. Check nozzle holder for worn threads. NEVER MIX DIFFERENT BRANDS OF COMPONENTS. Check each of these components DAILY.

10. Inspect NOZZLE and GASKET DAILY for wear. Replace nozzle when 1/16" larger than original size or if liner appears cracked. Check nozzle threads for wear.

11. Use abrasive that is properly sized and free of harmful substances; such as, free silica, cyanide, arsenic or lead. Check material data sheet for presence of toxic or harmful substances.

12. Test surface to be blasted for toxic substances. Take appropriate, and NIOSH required, protective measures for operator and bystanders which pertain to substances found on the surface to be blasted.
1.0 INTRODUCTION

1.1 Scope

1.1.1 These instructions cover the set-up, operation, maintenance, troubleshooting, and replacement parts for Climco dual chamber (continuous-action) blast machines with pressure-hold remote controls.

1.1.2 OSHA requires remote controls (valves that start and stop the blast process from a control at the nozzle) on all blast machines when a blast operator commands the nozzle. The remote control metering valve and air valve may vary from those shown in Figure 1. Some general remote control operating instructions are included in the text of this manual. These "RASIC" instructions are included for clarity. Separate owner manuals are provided, that includes operating, instructions of the remote controls and control handle supplied with the machine. To ensure safe blasting, before using the machine, read the manuals for the remotes controls, control handle, and all accessories to be used.

1.1.3 These instructions also contain important information required for safe operation of the machine. Blast machine tenders (the person who opens and closes the manual inlet and outlet ball valves to pressurize and depressurize the blast machine) must be trained in the safe operation of the blast machine and all blasting accessories. Before using the machine, all personnel involved with the blast machine operation must read this entire manual, including the orange cover, and all accessory manuals.

1.1.4 All personnel involved with the abrasive blasting process must be made aware of the hazards associated with abrasive blasting. The Climco booklet "Abrasive Blasting Safety Practices" (Stock No. 22909) is included with every blast machine, and contains important safety information about abrasive blasting that may not be included in operation manuals. Additional copies are available from Climco Industries. Spanish translations (Stock No. 22931) are available on request.

1.2 Hazard Alerts

1.2.1 Climco uses signal words, based on ANSI Z35.4-1998, to alert the user of a potentially hazardous situation that may be encountered while operating this equipment. ANSI's definitions of the signal words are as follows:

- CAUTION
 Caution used without the safety alert symbol indicates a potentially hazardous situation which, if not avoided, may result in property damage.

- DANGER
 Danger indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury.

- WARNING
 Warning indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury.
DUAL CHAMBER BLAST MACHINE with REMOTE CONTROL

Exhaust Muffler
Pop-up Seal
Pop-up Valve
Pop-up Guide
Umbrella (Standard on lower chamber)

Concave Filling Head
Lifting Eye
Outlet Valve lower chamber
Air Valve PVR Pinch Valve shown
Quick Coupling (blast hose connector)
Lock Pin

Dual Chamber Shown With Single Outlet

Hose Safety Cable (optional accessory)

Umbrella (optional on upper chamber)

Inlet Valve Upper Chamber
Balance Tank (dual outlet machines only)
Primary Inlet Valve 2" on dual outlet
Orifice Fitting Remote control source

Dual Chamber Shown With Dual Outlets

Cover (optional accessory)
Screen (optional accessory)

Outlet Valve upper chamber
Inspection Door upper chamber
Inspection Door lower chamber

Abraasive Mistening Valve Shown

Leg-pad Option

Wheel Option

Figures 1
1.4 Remote Controls

1.4.1 The remote control system is an OSHA-required safety device. The control handle, located near the blast nozzle, is the activator for the remote control system. Blasting stops when the operator intentionally or unintentionally removes hand-held pressure from the remote control handle. The remote control system "fails to safe," which means any interruption in the control-air circuit for reasons, such as a break in the line, the compressor stops running, or the operator drops the blast hose, the remote controls stops the blast process.

WARNING

Never modify or substitute remote control parts. Parts from other manufacturers are not compatible with Cemco equipment. If any part of the remote control system is altered, involuntary activation, which may cause serious injury, can occur.

1.4.2 Most remote controls used with dual chamber machines are pressure-hold type. The instructions in this manual cover general operating instructions for pressure-hold systems. In some cases pressure-release remote controls are used with single outlet, dual chamber machines. In either case, separate operating instructions are provided for the remote controls furnished on the machine. Refer to the remote control manual, and control handle manual for detailed set-up and operating instructions.

Pressure-Hold System: Blasting does not start and stop with pressurization and depressurization of the blast machine. Using hand operated inlet and outlet valves, the operator manually pressurizes and depressurizes the blast machine. Although the machine may be under pressure, blasting does not begin, because a normally closed air valve prevents air flow, and a normally closed abrasive valves prevents abrasive flow. When the operator presses the control handle, the valves open, and blasting begins. Pressure remains in the blast machine until it is manually depressurized. All remote controls on multiple outlet machines must be pressure-hold controls.

Pressure-Release Systems: Blasting starts and stops with pressurization and depressurization of the machine. When this system is used with a dual chamber machine, the controls operate the lower chamber only.
2.0 INITIAL SET-UP

2.1 Storage Hopper

2.1.1 When a storage hopper is installed above the blast machine, an umbrella is required above the upper chamber pop-up opening. See Section 8.2 for optional bolt-on umbrella.

2.2 Blast Machine Set-Up

⚠️ WARNING

Exhaust mufflers are installed on this machine. The muffler reduces exhaust noise and prevents abrasive from exhausting upward or sideways into the air. When the blast machine is depressurized, the muffler body pops up to diffuse the air and abrasive. When the machine is fully depressurized, the muffler body drops, permitting trapped abrasive to empty. For the muffler to work properly, it must be installed with the body facing up, as shown in Figure 1.

Note: Dual chamber machines demand high volumes of compressed air when the upper chamber is cycled, or when the machine is furnished with dual outlets. Installing a receiver tank sized to the cfm requirements shown in the table in Figure 2, reduces the chance of abrasive surging and air-flow problems when cycling the upper chamber or second outlet.

2.2.1 Install an optional filter/moisture separator in front of the primary inlet valve. The filter is recommended at this location to remove moisture from air before it enters the machine. The filter must be capable of supporting the cfm as noted in the table in Figure 2.

2.2.2 Install an air supply hose fitting to the primary valve (or moisture separator), that is compatible with the compressed-air supply hose. See 3.2.2.

2.2.3 Refer to the remote control owners manual for set-up and operation of the remote controls.

3.0 OPERATION

3.1 Transporting and moving

3.1.1 Transporting a blast machine

⚠️ WARNING

- Always empty the blast machine before lifting or hoisting.
- Never hoist the machine by the handle or piping, or with a sling through the handle or piping.
- Always use lift equipment that is rated higher than the weight of the machine and accessories.
- When transporting a machine on a pallet, always securely attach the machine to a sturdy pallet.
- Always securely anchor the machine to the transport vehicle.
- Anyone using material handling equipment to move, transport, or lift the machine must be experienced, and able to recognize and avoid hazards associated with handling this type of machinery, and to safely operate the equipment.
- Failure to observe these warnings could result in serious injury or death.

3.1.1.1 Use lifting eyes when moving, or loading and unloading the blast machine. Do not use a sling around the handle or piping.

3.1.1.2 Always empty the machine before transporting. Transporting a machine containing abrasive may increase the weight to an unsafe handling limit, and could cause abrasive to settle in the piping.

3.1.2 Moving a blast machine

⚠️ WARNING

- Never attempt to manually move a dual chamber blast machine when it contains abrasive.
- Do not manually move the machine on an incline, or on a slippery or irregular surface that could cause the operator to slip or lose balance.
- Do not tilt the machine on its wheels, or attempt to move the machine in hand-truck manner. Even an empty machine is too heavy to maneuver that way. The wheels are there to help maneuver an empty, upright machine into its final position.
3.1.2.1 An empty machine may be slid manually, on level flat surfaces, by at least two people.

3.1.2.2 Slide the machine by pushing it toward the wheels. Do not back-up while moving the machine, as potential tripping hazards cannot be seen.

3.2 Set-Up for Operation

3.2.1 Locate the compressor upwind from the blasting operation to prevent contaminated air from entering the compressor intake.

Compressed Air and Abrasive Consumption

Consumption rates are based on abrasive that weigh 100 pounds per cubic foot

<table>
<thead>
<tr>
<th>Orifice Size (in.)</th>
<th>Pressure At The Nozzle (psi)</th>
<th>Air, Power and Abrasive Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>No. 3</td>
<td>150</td>
<td>196</td>
</tr>
<tr>
<td>3/16"</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>No. 4</td>
<td>47</td>
<td>61</td>
</tr>
<tr>
<td>1/4"</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>No. 5</td>
<td>468</td>
<td>604</td>
</tr>
<tr>
<td>5/16"</td>
<td>18</td>
<td>23</td>
</tr>
<tr>
<td>No. 6</td>
<td>668</td>
<td>864</td>
</tr>
<tr>
<td>3/8"</td>
<td>24</td>
<td>32</td>
</tr>
<tr>
<td>No. 7</td>
<td>896</td>
<td>1176</td>
</tr>
<tr>
<td>7/16"</td>
<td>33</td>
<td>44</td>
</tr>
<tr>
<td>No. 8</td>
<td>1160</td>
<td>1512</td>
</tr>
<tr>
<td>1/2"</td>
<td>44</td>
<td>56</td>
</tr>
</tbody>
</table>

- For nozzle sizes 3/8" to 1/2", blast machines should be equipped with 1-1/4" or larger piping and inlet valve to prevent pressure loss.
- Air requirements were measured by a flow meter under actual blasting conditions, and are therefore lower than figures for air alone, with no abrasive.
- Horsepower requirements are based on 4.5 cfm per horsepower.
- Figures are for reference only, and may vary for different working conditions. Several variables, including metering valve adjustments, can affect abrasive flow.
- Figures show approximate compressed air and abrasive consumption when nozzles are new. Consumption will increase as the nozzle wears.

Figure 2
DUAL CHAMBER BLAST MACHINE with REMOTE CONTROL

<table>
<thead>
<tr>
<th>Nozzle Size</th>
<th>Number of Nozzles</th>
<th>CFM@125 psi New</th>
<th>Worn</th>
<th>Minimum Air Line ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/16"</td>
<td>1</td>
<td>170 to 240</td>
<td></td>
<td>1-1/2"</td>
</tr>
<tr>
<td>5/16"</td>
<td>2</td>
<td>340 to 480</td>
<td></td>
<td>2"</td>
</tr>
<tr>
<td>3/8"</td>
<td>1</td>
<td>240 to 315</td>
<td></td>
<td>2"</td>
</tr>
<tr>
<td>3/8"</td>
<td>2</td>
<td>480 to 630</td>
<td></td>
<td>2-1/2"</td>
</tr>
<tr>
<td>7/16"</td>
<td>1</td>
<td>315 to 410</td>
<td></td>
<td>2"</td>
</tr>
<tr>
<td>7/16"</td>
<td>2</td>
<td>630 to 820</td>
<td></td>
<td>2-1/2"</td>
</tr>
<tr>
<td>1/2"</td>
<td></td>
<td>410 to 520</td>
<td></td>
<td>2-1/2"</td>
</tr>
<tr>
<td>1/2"</td>
<td>2</td>
<td>820 to 1040</td>
<td></td>
<td>3"</td>
</tr>
</tbody>
</table>

Minimum ID air line recommendations for multiple nozzles. CFM shown is the approximate cfm required at 125 psi when the nozzle is new, and when worn. A nozzle is considered worn when the orifice is 1/16" larger than its original size.

WARNING

Where two or more blast machines (or multiple nozzles) are used, care must be taken when tracing and connecting control lines and blast hoses. Cross connecting control hose or blast hose could lead to serious injury, death, or property damage from unintentional actuation of a blast machine. To prevent cross connections, hoses should be of equal lengths, and the hoses and blast machine couplings clearly marked. Use optional hose identification kits, part no. 15890 for use with two blast machines (nozzle), or part no. 15891 for up to four machines. Mark each hose and connection per the instructions supplied with the kit, and carefully trace and verify each connection before operating.

3.2.3 Make sure the coupling gaskets are in place and in good condition before connecting the blast hose to the quick coupling on the blast machine. Use safety lock-pins or safety wire to lock the couplings together, to prevent accidental separation during blasting.

3.2.4 Make sure that all blast hose and compressed-air supply hose connections are secured with safety locks and safety cables to prevent accidental separation or disconnection. Lock pins and safety cables are listed in Sections 8.1 and 8.2.

WARNING

Hose disconnection while under pressure could cause serious injury or death. Use safety lock-pins and safety cables on all coupling connections to help prevent hose couplings from accidental disconnection.

3.2.5 Connect the ends of the remote control twinline hose to the fittings on the valves as described in the remote control manuals. Check that all fittings are tight. Leaks will cause the system to malfunction.

3.2.6 Close the primary inlet valve and upper chamber inlet valve. The valves are closed when the handle is perpendicular to the valve.

3.2.7 Check that the outlet valve and choke valve(s) (two on dual outlet machines) are open. The valves are open when the handle is in-line with the piping.

3.2.8 Close the abrasive metering valve(s) (two on dual outlet machines). The closest position for the Sentiael metering valve is when the handle is fully right. The closest position for the optional knob type valves is when the metering knob is turned fully clockwise.

3.2.9 Open the remote control safety petcock(s) (two on dual outlet machines), and check the control handles per instructions in the remote control and control handle manuals.

3.2.10 Close the compressor's air valve. Start the compressor, and bring it up to operating temperature and pressure. The pressure must not exceed 125 psi.

3.2.11 Load abrasive into the machine by following the instructions in Section 3.7.

3 Pressurize The Machine

3.3.1 Do not allow anyone within 10 feet of the blast machine except machine tenders, who are appropriately fitted with approved protective equipment.
3.3.2 Position the inlet and outlet valves as shown in Figure 4.

1. Close upper and lower outlet valves.
2. Open upper chamber inlet valve.

Figure 4

3.3.3 Slowly open the compressor air valve to pressurize the air supply line. Listen for noise that indicates any open lines or leaks.

3.3.4 While standing back and facing away from the concave filling head, open the primary inlet valve. This action causes the upper chamber pop-up valve to seal-off the filling port, pressurizes the machine, and begins the blast process.

3.4 Blasting

3.4.1 When the blast operator is ready to blast, either the operator or the machine tender closes the remote control safety petcock. Closing the petcock prepares the machine for remote operation and activation by the control handle.

3.4.2 Operators must wear appropriate protective gear, including: abrasive-resistant clothing, leather gloves, eye and hearing protection, and a NIOSH-approved Type CE Supplied-Air Respirator.

3.4.3 Hold the blast hose securely and point the nozzle only at objects intended to be blast cleaned.

3.4.4 Pull back the safety lever lock and depress the remote control handle. Within a few seconds, the pop-up valve automatically closes, and the blast machine will pressurize to start blasting.

3.4.5 The operator must then follow the required procedure for stopping and cleaning up the blast machine.

3.5 Shutdown

3.5.1 When the blasting is completed, the machine tender stops the remote control by closing the safety petcock.

3.5.2 The operator and machine tender should then follow the required procedure for cleaning up the blast machine and preparing it for storage.

4.0 Maintenance

4.1 The blast machine should be inspected regularly for any wear or damage, and any necessary repairs should be made.

4.2 The compressed air system should be checked for pressure and purity.

4.3 The blasing nozzle should be cleaned and inspected for damage.

4.4 The machine should be stored in a clean, dry area, with appropriate safety precautions in place.

4.5 The machine should be used only by trained operators.

5.0 Troubleshooting

5.1 If the machine fails to operate, check the air supply line, the control panel, and the remote control handle.

5.2 If the machine malfunctions, contact a qualified technician for repair.

6.0 Parts List

6.1 The parts list for the blast machine is included in the appendix.

7.0 Appendix

7.1 The appendix contains additional information and diagrams for the blast machine.

8.0 References

8.1 The references for the blast machine are included in the bibliography.
3.4.5 If the metering valve is closed, as instructed, only air will exit the nozzle.

3.4.6 Adjust abrasive flow per Section 4.1.

3.5 Stop Blasting

3.5.1 To stop blasting, release the control handle lever.

3.5.2 When the control handle lever is released, the control handle safety lever will flip up to lock the handle lever in the up (no blast) position.

3.5.3 Make sure that the control handle safety lever lock is up, and that it prevents the handle lever from engaging.

3.5.4 Always open the safety petcock during work breaks and before filling the blast machine. Opening the petcock prevents unintentional blasting.

3.6 Depressurize the machine

3.6.1 To depressurize the machine, the machine tender closes the primary inlet valve, and while standing back and facing away from the concave head and exhaust muffler, quickly opens the upper and lower chamber outlet valves. The pop-up valve automatically drops when air is expelled from the machine and pressure equalizes.

3.7 Loading Abrasive into the Blast Machine
See Section 3.9 for automatic refilling.

3.8 Cycling the Upper Chamber (refilling the upper chamber while blasting from the lower chamber). Ref. Figure 5. See Section 3.9 for automatic refilling.

3.8.1 During blasting, and after approximately one-half of the abrasive in the machine has been used, close the upper chamber inlet valve, and while standing back and facing away from the concave head and exhaust muffler, "quickly" open the upper chamber outlet valve.

NOTE: Air must exhaust rapidly from the upper chamber in order for the lower chamber pop-up valve to function properly.
to seal. The upper pop-up valve automatically drops when air is expelled from the upper chamber. Blasting continues from the lower chamber.

1. Close upper chamber inlet valve.
2. Rapidly open upper chamber outlet valve.

Parts are rotated for clarity

Upper Chamber
Outlet Valve

Upper Chamber Inlet Valve

Lower Chamber
Outlet Valve
(leave closed)

Figure 5

3.8.2 Load abrasive into the upper chamber per Section 3.7.

3.8.3 Pressurize the upper chamber, by closing the upper chamber outlet valve and opening the upper chamber inlet valve. When pressure in the upper and lower chambers equalize, the lower chamber pop-up valve drops, refilling the lower chamber with abrasive.

3.8.4 Repeat the process for continuous-action blasting.

3.9 Automatic Refilling

3.9.1 For hopper-fed machines, refilling can be accomplished automatically with a cycle timer. See Accessories in Section 8.1. Hopper-fed machines must have an umbrella mounted above the upper chamber pop-up opening. See Section 8.2 for bolt-on umbrella.

3.10 Emptying the Machine of Abrasive

3.10.1 When working in environments subject to extreme temperature changes, or very humid conditions, condensation may develop inside the machine. Condensation wets abrasive and causes flow problems. To prevent this, empty the machine of all abrasive, when shutting down for the day. This will eliminate trouble from moist abrasive when starting a new day's blasting.

One way to avoid having to empty the machine is to load only as much abrasive as will be used during the work period. If the machine must be purged of abrasive, do the following:

3.10.2 With the blast machine off, turn the blast pressure down to approximately 40-50 psi, close the choke valve(s) and set the abrasive metering valve(s) at full open.

3.10.3 To prevent rapid wear of the nozzle holder threads, the nozzle should be firmly attached to the nozzle holder. Removal of the nozzle is not recommended. If circumstances require the nozzle to be removed, also remove the nozzle washer. Purging the machine without a nozzle, will eventually erode the thread area of the nozzle holder, which could cause a hazardous condition.

3.10.4 Pressurize the machine.

3.10.5 Point the nozzle into a drum or suitable container, or in the direction the abrasive is to be disposed.

3.10.6 Hold the hose securely (do not leave the hose unattended), and activate the control handle. Be prepared for surging or recoil of the hose, which can be severe.

3.10.7 When the machine is empty, release the control handle lever, open the safety petcock, open the choke valve and depressurize the machine.

3.10.8 If the nozzle was removed, thoroughly inspect the nozzle holder threads for wear before installing the nozzle washer and attaching the nozzle.

⚠️ WARNING

The threads on the nozzle and nozzle holder must be inspected each time the nozzle is secured to the holder. Check that the threads are not worn, and that the nozzle holder securely grips the nozzle. The nozzle washer must also be inspected for wear. Worn nozzle washers cause thread erosion. A loose fitting nozzle may eject from the holder under pressure and could cause severe injury.

3.11 Shutdown

3.11.1 Ensure that the blast machine is depressurized.

3.11.2 Close the compressed-air supply valve at the compressor.
5.1 Daily Inspection
5.1.1 With the air off, before blasting, do the following:
 • Inspect the blast hose for wear; look for soft spots. If the hose has soft spots, the hose is worn and must be replaced.

⚠️ WARNING
Worn blast hose could suddenly fail by bursting. Couplings and nozzle holders may not adequately grip worn hose causing them to blow-off under pressure. Compressed air and abrasive escaping from a burst hose, or disconnected coupling or nozzle holder, could cause severe injury.
 • Check to make sure that couplings are secure and lock pins and safety cables are in place.
 • Make sure the nozzle washer is in place and not worn.

⚠️ WARNING
The threads on the nozzle and nozzle holder must be inspected each time the nozzle is secured to the holder. Check that the threads are not worn, and that the nozzle holder securely grips the nozzle. The nozzle washer must also be inspected for wear. Worn nozzle washers cause thread erosion. A loose fitting nozzle may eject from the holder under pressure and could cause severe injury.
 • Inspect the RLX Control Handle

⚠️ WARNING
Malfunctioning control handles could cause unintentional actuation of a blast machine, or prevent a machine from deactivating upon release. Malfunctioning control handles must be taken out of service immediately and repaired or replaced. Serious injury or death can result from unintentional blasting.

5.1.2 During blasting, do the following:
 • Inspect all couplings and coupling gaskets for leaks.

5.0 PREVENTIVE MAINTENANCE

NOTE: These preventive maintenance instructions pertain to the blast machine. Read the owner's manuals for the remote controls, control handle and all blast accessories, for their inspection and maintenance schedules.
- Check the blast machine for leaks. If leaks are found around the pop-up valve, inspection door, or pipe fittings at the bottom of the cone, stop blasting immediately and repair or replace worn parts. If leaks are allowed to continue, abrasive erosion could cause irreparable damage to the blast machine.
- Check all external piping, control hoses, and valves for leaks. If leaks are found, stop blasting and repair.
- Inspect blast hose, couplings, and nozzle holders for leaks. At the first sign of a leak, stop blasting and inspect all items for wear.

WARNING

Leaks around couplings and nozzle holders indicate worn or loose-fitting parts. Nozzle holders and couplings that do not fit tight on hose, and nozzles that don’t fit tight in nozzle holders could disconnect while under pressure. Impact from nozzles, couplings, hoses, or abrasive, from parts disconnected by pressure during operation could cause severe injury.

5.2 Weekly Inspection

5.2.1 With the air off, before blasting, do the following:
- Remove the nozzle for inspection. Replace if the orifice diameter is worn 1/16" or more, or if the liner is cracked.
- If the optional moisture separator is used, inspect the filter element, and clean the bowl.

5.2.2 After blasting do the following:
- Note the time it takes to fully depressurize the machine after the outlet valve is opened. When depressurizing time increases noticeably, inspect the exhaust muffler per Section 6.5.

5.3 Monthly Inspection

5.3.1 With the air off, before blasting, do the following:
- Check the pop-up valve’s urethane coating for cracks and grooves. Replace the pop-up valve at the first sign of wear. See Section 6.3.
- Inspect the rubber pop-up seal, and replace at the first sign of wear, drying, or cracking. See Section 6.4.

6.0 SERVICE MAINTENANCE

WARNING

Failure to observe the following before performing any maintenance could cause serious injury or death from the sudden release of compressed air.
- Depressurize the blast machine.
- Lock-out and tag-out the compressed air supply.
- Bleed the air supply line to the blast machine.

6.1 Removing damp abrasive from the blast machine.

6.1.1 To clear a minor blockage caused from damp abrasive, during operation, rapidly open and close the choke valve several times.

6.1.2 For more difficult blockages, proceed as follows:
- See Section 6.2 to check for obstructions in the metering valve.

6.1.3 With the blast machine off, disconnect the blast hose and remove the gasket from the quick coupling on the machine.

6.1.4 Place the machine so that the outlet is pointed away from any objects or persons.

WARNING

Place the machine so that the outlet is pointed away from any objects or persons. Stand clear of the path of exiting abrasive. It may come out at high velocity. Impact from exiting abrasive could cause severe injury.

6.1.5 Close the choke valve and fully open the abrasive metering valve.

6.1.6 Pressurize the machine and activate the control handle to force out damp abrasive.

6.1.7 When the obstruction has been removed, release the control handle and depressurize the machine. Remove the nozzle and nozzle washer, and reconnect the hose.
Open the choke valve and close the abrasive metering valve. Pressurize the machine and activate the control handle to clear the hose. When the hose is cleared, release the handle and depressurize the machine so the nozzle and nozzle washer can be attached.

⚠ WARNING

The threads on the nozzle and nozzle holder must be inspected each time the nozzle is secured to the holder. Make sure the threads are not worn, and that the nozzle holder securely holds the nozzle. The nozzle washer must also be inspected for wear. Worn nozzle washers could erode nozzle threads. A loose fitting nozzle may eject under pressure and could cause severe injury.

6.1.8 With the hose cleared, start the machine using normal procedures.

6.2 Clearing obstructions in the abrasive metering valve and blast machine.

6.2.1 If the nature of the obstruction permits emptying the machine of abrasive, do so by following the instructions per Section 3.10.

6.2.2 Turn off the compressed air supply. Lock-out and tag-out the air supply, and bleed the air supply line to the blast machine.

6.2.3 Remove the wing nuts securing the abrasive metering valve’s inspection plate.

6.2.4 Check the metering valve for blockage, by inserting a finger into the opening, and feel for an obstruction or foreign object.

6.2.5 If the metering valve is clear, remove the blast machine inspection door assembly, and check for foreign objects.

6.2.6 Make sure the inspection door gasket is in good condition, and in place before bolting the door onto the machine.

6.2.7 Make sure the abrasive metering valve inspection plate O-ring is in good condition, and in place before reassembling the inspection plate.

6.2.8 Check to make sure all inspection doors are secure before starting the compressed air supply.

6.3. Replacing the Pop-Up Valve, Figure 6

6.3.1 All service on the pop-up valve must be done with the compressed air off and the air supply locked-out and tagged-out.

6.3.2 To gain access to the pop-up valve, remove the inspection door assembly.

6.3.3 Using a small pipe wrench, unscrew the pop-up valve guide by turning it counterclockwise. Remove the pop-up valve and guide from the machine.

6.3.4 While the pop-up valve is out, check alignment as follows: Screw a 1-1/4" nipple, that is at least 12" long, into the elbow in place of the pop-up guide. Check the alignment through the pop-up filling port. The nipple should be close to the center of the port. If it is not, adjust the horizontal pipe. A misaligned pop-up valve could result in early valve failure, or abrasive leakage when the machine is pressurized or depressurized.

![Figure 6](image)

6.3.5 Slide the new pop-up valve over the guide, then screw the valve guide (with the pop-up valve on it) into position inside the machine. Tighten the guide snug, but not wrench-tight. Over-tightening the guide will make it difficult to remove, the next time the pop-up valve needs replacement.

6.3.6 Refer to Figure 7 to check the pop-up height. If the pop-up sits too low, misalignment could occur when the pop-up comes up against the seal. If the pop-up sits...
too high, it will take longer for abrasive to flow through the opening. Adjust the height by replacing the guide with one that is longer or shorter.

6.3.7 Put a new gasket on the inspection door assembly before bolting the door onto the machine.

6.4 Replacing the Pop-Up Seal

6.4.1 All service on the blast machine must be done with the compressed air off and the air supply locked-out and tagged-out.

6.4.2 Remove the old seal using fingers, screwdriver, or similar object, to work the seal out of the retaining groove.

6.4.3 Push the new seal all the way through the port and then fit it into the retaining groove. For the last few inches, pull up on the seal and allow it to pop into position.

6.5 Exhaust Muffler, Figure 8

WARNING

Service the muffler, and replace the element body as soon as the time it takes to depressurize the blast machine increases noticeably. Longer depressurization time indicates the porous element body is becoming clogged. If the element becomes plugged, excessive air pressure could build up inside the element, and cause it to burst, which could result in injury.

6.5.1 All service on the muffler must be done with the compressed air off and the air supply locked-out and tagged-out.

6.5.2 Using a pipe wrench, remove the muffler assembly from the exhaust elbow by unscrewing the 1” pipe guide.

6.5.3 Remove the three lock-nuts and screws, and separate all parts.

6.5.4 Inspect for wear. Replace parts that show signs of wear. Replace the cap if the urethane coating is worn. Always replace the element body.

6.5.5 Ensure that the guide nut is fastened tightly to the guide.

WARNING

Replace the guide and guide nut if the nut is not tightly fused to the guide. A loose fitting nut could work off the guide, permitting the muffler assembly to launch under pressure, and cause severe injury.

6.5.6 Clean parts to be reused, with a non-caustic solvent or detergent, and dry thoroughly.

6.5.7 Reassemble, taking care to correctly insert the screws in the seat plate. The screw holes are the three closest to the center. See the illustration in Figure 8.

6.5.8 Firmly tighten the lock-nuts.

6.5.9 Use a pipe wrench to attach the muffler assembly to the exhaust elbow. In its final position, the muffler must face up.

7.0 TROUBLESHOOTING

NOTE: This section only identifies conditions and problems in the blast machine and remote control system. Always refer to the appropriate section of this manual, or manuals for accessory equipment, before servicing the equipment.
DUAL CHAMBER BLAST MACHINE with REMOTE CONTROL

7.1 Neither abrasive nor air comes out of the nozzle while the machine is under pressure.

7.1.1 Depressurize the blast machine. After the pop-up valve has dropped, remove the nozzle, and check for obstructions.

7.1.2 Make sure that both the abrasive metering valve and choke valve are open.

7.2 Air only (no abrasive) comes out the nozzle.

7.2.1 Abrasive metering valve may be closed or needs adjustment. Adjust the metering valve per Section 4.1.

7.2.2 Blast machine may be empty.

7.2.3 Abrasive may be damp. See Section 6.1 to clear damp abrasive.

7.2.4 Check the abrasive metering valve for obstructions per Section 6.2.

7.2.5 Open the safety petcock on the metering valve and press the control handle. If air does not come out the petcock, check for blockage in the twistline hose to and from the control handle. If air does come out, the metering valve actuator section is not functioning. Refer to the metering valve manual for servicing the valve.

7.3 Heavy abrasive flow.

7.3.1 Check that the choke valve is open. The valve is open when the handle is in-line with the piping.

7.3.2 Abrasive metering valve may be open too far. See Section 4.1.

7.3.3 Check the abrasive metering valve and air valve for wear. Refer to the remote control manual for troubleshooting and servicing the remote system. If there is an internal leak in the air valve it will act as if the choke valve is partially closed.

7.4 Abrasive surging.

7.4.1 A certain amount of abrasive surge is normal at start-up. Should the flow of abrasive continue to surge, reduce the amount of abrasive in the air stream by adjusting the metering valve. See Section 4.1.

7.4.2 Check the exhaust muffler for blockage. Slow depressurization will load the blast hose with abrasive, and cause surging at start-up.

7.4.3 Abrasive metering valve may require service. Refer to the metering valve manual.

7.5 Intermittent abrasive flow.

7.5.1 Moisture in the blast machine or in the air supply. Drain moisture from the compressor's receiver tank, and if so equipped, the blast machine's moisture separator. If moisture continues to be a problem, a dryer or aftercooler may be required in the air supply line.

7.5.2 Abrasive may be worn from recycling. Replace abrasive.

7.6 Blast machine will not pressurize.

7.6.1 Check that the compressor is on and all air supply valves to the machine are open.

7.6.2 Insufficient-size air supply hose or reduced-size fittings between the compressor and blast machine. See Section 3.2.2.

7.6.3 Dirty filter in moisture separator. Check filter element.

7.6.4 Pop-up valve stuck, or internal piping worn or out of alignment. Inspect internal piping.

7.7 Lower chamber won't seal when upper chamber is depressurized.
7.7.1 Upper chamber exhaust valve opened too slowly. Quickly open the exhaust valve. Air must exhaust rapidly from the upper chamber for the lower chamber pop-up valve to seal.

7.7.2 Exhaust muffler blocked. Service muffler per Section 6.5.

7.8 Blasting does not start when the control handle is pressed

7.8.1 Fault in the remote control system. Refer to the remote control, and control handle manuals.

7.9 Blasting does not stop when the control handle is released

7.9.1 Fault in the remote control system. Refer to the remote control, and control handle manuals.

8.0 ACCESSORIES and REPLACEMENT PARTS

8.1 Optional Accessories

(-) Cycle Timer kit
120 volt AC .. 02207
12 volt DC .. 03439

(-) Safety cable, 3/4" to 1-1/2" ID blast hose 15013

8.2 Abrasive Metering Valve Replacement Parts
Refer to the remote control owner's manual for replacement parts.

8.3 Air Valve Replacement Parts
Refer to the remote control owner's manual for replacement parts.

8.4 Exhaust Muffler, Figure 8

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Stock No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-)</td>
<td>Muffler, complete ... 05068</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Screw, 8-32 x 4" .. 05061</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Cap, coated .. 05067</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Body, element .. 05063</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Screen .. 05060</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Guide w/guide nut ... 22344</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>O-ring, 1-1/4" ID ... 05069</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Seat .. 05062</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Lock-nut, 8-32 stainless steel 05815</td>
<td></td>
</tr>
</tbody>
</table>

Figure 8
8.5 Blast Machine and Accessories, Figure 9

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Stock No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ball valve with handle, 1"</td>
<td>02396</td>
</tr>
<tr>
<td>2</td>
<td>Handle, 1" ball valve</td>
<td>022531</td>
</tr>
<tr>
<td>3</td>
<td>Ball valve with handle, 1-1/4"</td>
<td>02397</td>
</tr>
<tr>
<td>4</td>
<td>Handle, 1-1/4" ball valve</td>
<td>02532</td>
</tr>
<tr>
<td>5</td>
<td>Ball valve with handle, 2", dual outlet only</td>
<td>02368</td>
</tr>
<tr>
<td>6</td>
<td>Air valve, 1-1/4" (PVR pinch tube shown)</td>
<td>04320</td>
</tr>
<tr>
<td>7</td>
<td>Check valve, 1" cone</td>
<td>02087</td>
</tr>
<tr>
<td>8</td>
<td>Check valve, 1-1/4" cone</td>
<td>02088</td>
</tr>
<tr>
<td>9</td>
<td>Compression coupling, 1-1/4"</td>
<td>01857</td>
</tr>
<tr>
<td>10</td>
<td>Gasket, 1-1/4" compression coupling</td>
<td>01866</td>
</tr>
<tr>
<td>11</td>
<td>Coupling, 1-1/4" CF</td>
<td>00551</td>
</tr>
<tr>
<td>12</td>
<td>Wye, 1-1/4"</td>
<td>01818</td>
</tr>
<tr>
<td>13</td>
<td>Leg pad, right</td>
<td>03654</td>
</tr>
<tr>
<td>14</td>
<td>Leg pad, left</td>
<td>03655</td>
</tr>
</tbody>
</table>

15. Metering valve, (Sentinel shown) 20608
16. Gasket, CQG coupling, (package of 10) 00850
17. Balance tank, dual outlet only 02365
18. Wheel and tire, 400 x 16, each 02538
19. Axle, 24" dia. machine 02403
20. Retaining ring, 1" 03824
21. Thrust washer, 1" 03825
22. Inspection door assembly, 6" x 8" 02377
23. Gasket, 6" x 8" inspection door 02369
24. Seat, pop-up, gum rubber, standard use 02325
25. Seat, pop-up, neoprene, for hot clarifiers 02380
26. Muffler, exhaust 05068
27. Pop-up valve, 4" with external sleeve 03699
28. Internal pop-up guide, 4-1/2" toe nipple 21694
29. Umbrella, optional, 4" bolt-on 02318
30. Cover, optional, 24" diameter 02336
31. Scren, optional, 24" recessed type 03100
32. Lock pin, coupling (package of 25) 11203

Some items rotated for clarity

Figure 9